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● Quantum-resistent public key cryptos

● Attack vectors on public key cryptos
● Classical approach
● Quantum computing

● Existing asymmetric key algorithms (public key cryptos)

Table of Contents

● Lattice-based crypto
● Cryptos bases on encoding problems
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m = p⋅q

r := ϕ(m) = ( p−1)⋅(q−1)
r  can only be computed with 
knowledge of  (p,q)

Choose a public exponent  e  and compute a private exponent  d:

gn⋅r +1
≡ g (mod m)⇒

d ⋅e ≡ 1 (mod r ) d = e−1
(mod r )⇒

Public key:     (e, m)
Private key: (d, m)

≡ g d⋅e
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● Encryption:
b = ae mod m

● Decryption:
bd ≡ ae⋅d mod m = a

● Signature:
b = ad mod m

● Verification:
be ≡ ad⋅e mod m= a

(DLP: Discrete Logarithm Problem)



Bernd Fix      <brf@hoi-polloi.org>Post-Quantum Crypto

5 / 25Elliptic Curve Crypto  (1985)

y2
= x3

+ a⋅x + b (mod p)
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Generator point  G  forms an additive cyclic group  〈G〉Fp  on curve

⇒  all points on the curve have the form  P = a  ⋅ G  with scalar a (mod n)

The order n of G on the curve is the smallest value with  n  ⋅ G  =  ∞

(analog to DLP: Discrete Logarithm Problem, but much more
difficult to solve than DLP over finite fields  ⇒  shorter keys)

Private key: d

Public key: d  ⋅ G

It is easy to compute  P = a  ⋅ G,
but „infeasible“ to compute  a  from  P and G

Elliptic Curve Crypto  (1985)
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Every DLP-based cryptosystem (DSA, ElGamal, DH) can be
transformed into an ECC-based cryptosystem!

● Signature / Verification: ECDSA
● En-/Decryption: ECDH

DH (Diffie-Hellman)
● Parameter  g, p

● Public: e X = g d X mod p

● Shared: s= eA
d B = eB

d A (mod p )

● Random secrets: d
A
 and d

B

ECDH
● Parameter  G, n
● Random secrets: d

A
 and d

B

● Public: e X = d X⋅G mod n

● Shared: S = e A⋅d B = eB⋅d A (mod n)

Elliptic Curve Crypto  (1985)
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Classical approach (number theory):

Pollard-Rho algorithm,  Baby-step giant-step

All forms of quadratic sieves to find congruences   a2 ≡ b2 (mod m)

p= (a + b) , q = (a − b)
⇒ m= p⋅q =(a + b )⋅(a − b )=a2

− b2

⇒ a2
≡ b2

(mod m)

● Integer Factorization:                       [RSA]m = p⋅q

a = be (mod m)● Discrete Logarithm Problem:        [RSA]
[ECC]P = a⋅G (mod n)
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Quantum computing  (1994)

Attack vectors
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Qubits:

● Two states in superposition: α ∣0 〉 + β ∣1 〉 = α (10) + β (0
1)

● Realized with ion traps, NMR, Josephson junctions, photons, ...

Two superconducting regions
(loop) separated by a weak
link (insulator)

SQUID
(used for read-out)

Source: en.wikipedia.org
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Qubits  (Josephson junction):

● Writing:    Apply a magnetic field, currents will flow in the loop

● Reading:  Use a squid to measure the flows in the loop

Apply a particular  magnetic field and the ground
state is split into two states in superposition.

∣0 〉 ∣1 〉

Quantum computers
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Quantum gates  (doing computations):

Classic computers:    NOT, AND, OR

NOT: A = (0 1
1 0)

(quantum computer: only reversible operations = unitary matrices)

C-NOT: B = (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
CC-NOT: C = (

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

)
Sufficient to build a universal computer!

Quantum computers
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Quantum gates  (doing computations):

C-NOT: N = (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
C-SHIFT: P = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iϕ

)
HADAMARD: H =

1
√2 (1 1

1 −1)

Quantum computers

Composite gates:

DQT
n

U
f

...}
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Quantum computing  (Shor's algorithm):

Find a non-trivial solution for  b  such that   b2 ≡ 1 (mod m)

Substitute „factoring problem“ with „order-finding problem“
which is more suitable for quantum computing

1. Pick a random  a < m  with  gcd(a,m) = 1

2. Find the period  r  of  f(x) = ax mod m   such that   f(x+r) = f(x)

3. If  r  is odd  or  ar/2 ≡ ±1 (mod m),   go back to step 1
4. b = ar/2   and  gcd(b ±1, m)  is a non-trivial factor of  n

50% chance of finding a non-trivial factor for each pass

Attack vectors
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1.  Select  q  such that   m2  ≤  q (= 2L) < 2m2

2.  Prepare qubit register |a〉 of length L and initialize to state |0〉

4.  Create highest superposition of |a〉 by appying Hadamard gates

5.  Apply (composite) U
f
 gate to |a〉  and  |b〉 :     |a,b〉  →  |a, b   ⨁ f(a)〉

3.  Prepare qubit register |b〉 of length ⎡log
2
 m⎤ and initialize to state |0〉

6.  Transform |a〉 into a different basis by a QFT (Quantum Fourier Transformation)

7.  Observe |a〉  and  compute the period  r

Quantum computing  (Shor's algorithm):

Attack vectors
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NIST ECC domain parameters (and others ?!) becoming fubar

Thank you, stupid assholes!
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We need new asymmetric key crypto:

● with resistence to quantum computer attacks

● developed as free software with no patents whatsoever

● with open peer review by crypto community

● „do what you want, anything goes“
ignore commercial / govermental standardization
promote community-agreed, decentralized „standards“
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● Lattice-based cryptography: nTru, GGH

● Multivariate cryptography

● Hash-based signatures: Lamport-, Merkle-signatures

● Code-based cryptography: McEliece enc., Niederreiter sigs
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Lattice-based crypto:

„good“ base
„bad“ base

Find problems that are
easy to solve with a
good base, but are
very hard to solve with a
bad base...
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Lattice-based crypto

● Closest Vector Problem (CVP)

Find the vector  v ∈ L  closest to
a vector  w ∉ L

● Shortest Vector Problem (SVP)

Find the shortest vector  v ∈ L

Source: en.wikipedia.org
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Lattice-based crypto:    nTru

● Key generation:     two polynominals  f  and  g  with  a
n
 ∈ { -1,0,1 }

Private key:      ( f,  f -1 mod p )
Public key:        p ⋅ (f -1 mod q)⋅ g  (mod q)

● Encryption:     polynominals  m, r   results in  e = r⋅ h + m (mod q)

● Decryption:     a = e  f  (mod q)⋅ ,  b = a  (mod p),  m = (f -1 mod p)⋅ b

(https://github.com/NTRUOpenSourceProject/ntru-crypto)

● Based on objects in a truncated polynominal ring   ℤ[X] / (XN-1) :
a = a0 + a1 X + a2 X

2 + a2 X
2 + ⋯+ aN−1 X

N−1

● Domain parameters  (N, p, q)  with  N  prime, q > p  and  p ⊥ q



Bernd Fix      <brf@hoi-polloi.org>Post-Quantum Crypto

22 / 25Post Quantum Crypto

Code-based cryptography:            (McEliece encryption)

● Linear binary codes  [n,k,d]  have length  n, rank  k  and distance  d

● Example:  Hamming code  [2r, 2r – r – 1, 3]  with  r ≥ 2

1. Binary matrix  G  encodes blocks of k bits into blocks of n bits

4. Matrix  H  detects  t  errors at any position in blocks of  k  bits

3. Efficient decoding algorithm to transform n bits back into k bits

2. Minimal Hamming distance of rows (base vectors!) of  G  is  d

● Example:  Hadamard code  [2r, r, 2r-1]  with  r ≥ 2
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Code-based cryptography:            (McEliece encryption)

● Key generation:
1.  Construct a  k ⨉ n  binary matrix  G  that can correct  t  errors
2.  Construct a random  k ⨉ k  invertible binary matrix  S
3.  Construct a random  n ⨉ n  permutation matrix  P
4.  Compute matrix  K = S⋅ G⋅ P

Public key:    (K, t )
Private key:   (S, G, P )
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Code-based cryptography:            (McEliece encryption)

● Encryption using public key (K, t ):
1.  Construct a  k-bit message  m  to be encrypted
2.  Compute  n-bit encrypted message  e = m⋅ K

3.  Construct a random  n-bit vector r  with  t  bits set
4.  Compute ciphertext   c = e ⨁  t

● Decryption using private key (S, G, P ):
1.  Compute  n-bit message  p = c  P⋅ -1

2.  Decode n-bit message  p  into  k-bit message  d 
3.  Compute  k-bit plaintext message  m = p  S⋅ -1
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