
Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

1 / 25

Post Quantum Crypto
Bernd Fix <brf@hoi-polloi.org>

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

2 / 25

● Quantum-resistent public key cryptos

● Attack vectors on public key cryptos
● Classical approach
● Quantum computing

● Existing asymmetric key algorithms (public key cryptos)

Table of Contents

● Lattice-based crypto
● Cryptos bases on encoding problems

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

3 / 25RSA algorithm (1977)

m = p⋅q

r := ϕ(m) = (p−1)⋅(q−1)
r can only be computed with
knowledge of (p,q)

Choose a public exponent e and compute a private exponent d:

gn⋅r +1
≡ g (mod m)⇒

d ⋅e ≡ 1 (mod r) d = e−1
(mod r)⇒

Public key: (e, m)
Private key: (d, m)

≡ g d⋅e

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

4 / 25RSA algorithm (1977)

● Encryption:
b = ae mod m

● Decryption:
bd ≡ ae⋅d mod m = a

● Signature:
b = ad mod m

● Verification:
be ≡ ad⋅e mod m= a

(DLP: Discrete Logarithm Problem)

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

5 / 25Elliptic Curve Crypto (1985)

y2
= x3

+ a⋅x + b (mod p)

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

6 / 25

Generator point G forms an additive cyclic group 〈G〉Fp on curve

⇒ all points on the curve have the form P = a ⋅ G with scalar a (mod n)

The order n of G on the curve is the smallest value with n ⋅ G = ∞

(analog to DLP: Discrete Logarithm Problem, but much more
difficult to solve than DLP over finite fields ⇒ shorter keys)

Private key: d

Public key: d ⋅ G

It is easy to compute P = a ⋅ G,
but „infeasible“ to compute a from P and G

Elliptic Curve Crypto (1985)

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

7 / 25

Every DLP-based cryptosystem (DSA, ElGamal, DH) can be
transformed into an ECC-based cryptosystem!

● Signature / Verification: ECDSA
● En-/Decryption: ECDH

DH (Diffie-Hellman)
● Parameter g, p

● Public: e X = g d X mod p

● Shared: s= eA
d B = eB

d A (mod p)

● Random secrets: d
A
 and d

B

ECDH
● Parameter G, n
● Random secrets: d

A
 and d

B

● Public: e X = d X⋅G mod n

● Shared: S = e A⋅d B = eB⋅d A (mod n)

Elliptic Curve Crypto (1985)

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

8 / 25Attack vectors

Classical approach (number theory):

Pollard-Rho algorithm, Baby-step giant-step

All forms of quadratic sieves to find congruences a2 ≡ b2 (mod m)

p= (a + b) , q = (a − b)
⇒ m= p⋅q =(a + b)⋅(a − b)=a2

− b2

⇒ a2
≡ b2

(mod m)

● Integer Factorization: [RSA]m = p⋅q

a = be (mod m)● Discrete Logarithm Problem: [RSA]
[ECC]P = a⋅G (mod n)

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

9 / 25

Quantum computing (1994)

Attack vectors

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

10 / 25Quantum computers

Qubits:

● Two states in superposition: α ∣0 〉 + β ∣1 〉 = α (10) + β (0
1)

● Realized with ion traps, NMR, Josephson junctions, photons, ...

Two superconducting regions
(loop) separated by a weak
link (insulator)

SQUID
(used for read-out)

Source: en.wikipedia.org

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

11 / 25

Qubits (Josephson junction):

● Writing: Apply a magnetic field, currents will flow in the loop

● Reading: Use a squid to measure the flows in the loop

Apply a particular magnetic field and the ground
state is split into two states in superposition.

∣0 〉 ∣1 〉

Quantum computers

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

12 / 25

Quantum gates (doing computations):

Classic computers: NOT, AND, OR

NOT: A = (0 1
1 0)

(quantum computer: only reversible operations = unitary matrices)

C-NOT: B = (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
CC-NOT: C = (

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

)
Sufficient to build a universal computer!

Quantum computers

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

13 / 25

Quantum gates (doing computations):

C-NOT: N = (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
C-SHIFT: P = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iϕ

)
HADAMARD: H =

1
√2 (1 1

1 −1)

Quantum computers

Composite gates:

DQT
n

U
f

...}

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

14 / 25

Quantum computing (Shor's algorithm):

Find a non-trivial solution for b such that b2 ≡ 1 (mod m)

Substitute „factoring problem“ with „order-finding problem“
which is more suitable for quantum computing

1. Pick a random a < m with gcd(a,m) = 1

2. Find the period r of f(x) = ax mod m such that f(x+r) = f(x)

3. If r is odd or ar/2 ≡ ±1 (mod m), go back to step 1
4. b = ar/2 and gcd(b ±1, m) is a non-trivial factor of n

50% chance of finding a non-trivial factor for each pass

Attack vectors

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

15 / 25

1. Select q such that m2 ≤ q (= 2L) < 2m2

2. Prepare qubit register |a〉 of length L and initialize to state |0〉

4. Create highest superposition of |a〉 by appying Hadamard gates

5. Apply (composite) U
f
 gate to |a〉 and |b〉 : |a,b〉 → |a, b ⨁ f(a)〉

3. Prepare qubit register |b〉 of length ⎡log
2
 m⎤ and initialize to state |0〉

6. Transform |a〉 into a different basis by a QFT (Quantum Fourier Transformation)

7. Observe |a〉 and compute the period r

Quantum computing (Shor's algorithm):

Attack vectors

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

16 / 25Attack vectors

NIST ECC domain parameters (and others ?!) becoming fubar

Thank you, stupid assholes!

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

17 / 25Post Quantum Crypto

We need new asymmetric key crypto:

● with resistence to quantum computer attacks

● developed as free software with no patents whatsoever

● with open peer review by crypto community

● „do what you want, anything goes“
ignore commercial / govermental standardization
promote community-agreed, decentralized „standards“

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

18 / 25Post Quantum Crypto

● Lattice-based cryptography: nTru, GGH

● Multivariate cryptography

● Hash-based signatures: Lamport-, Merkle-signatures

● Code-based cryptography: McEliece enc., Niederreiter sigs

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

19 / 25Post Quantum Crypto

Lattice-based crypto:

„good“ base
„bad“ base

Find problems that are
easy to solve with a
good base, but are
very hard to solve with a
bad base...

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

20 / 25Post Quantum CryptoPost Quantum Crypto

Lattice-based crypto

● Closest Vector Problem (CVP)

Find the vector v ∈ L closest to
a vector w ∉ L

● Shortest Vector Problem (SVP)

Find the shortest vector v ∈ L

Source: en.wikipedia.org

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

21 / 25Post Quantum Crypto

Lattice-based crypto: nTru

● Key generation: two polynominals f and g with a
n
 ∈ { -1,0,1 }

Private key: (f, f -1 mod p)
Public key: p ⋅ (f -1 mod q)⋅ g (mod q)

● Encryption: polynominals m, r results in e = r⋅ h + m (mod q)

● Decryption: a = e f (mod q)⋅ , b = a (mod p), m = (f -1 mod p)⋅ b

(https://github.com/NTRUOpenSourceProject/ntru-crypto)

● Based on objects in a truncated polynominal ring ℤ[X] / (XN-1) :
a = a0 + a1 X + a2 X

2 + a2 X
2 + ⋯+ aN−1 X

N−1

● Domain parameters (N, p, q) with N prime, q > p and p ⊥ q

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

22 / 25Post Quantum Crypto

Code-based cryptography: (McEliece encryption)

● Linear binary codes [n,k,d] have length n, rank k and distance d

● Example: Hamming code [2r, 2r – r – 1, 3] with r ≥ 2

1. Binary matrix G encodes blocks of k bits into blocks of n bits

4. Matrix H detects t errors at any position in blocks of k bits

3. Efficient decoding algorithm to transform n bits back into k bits

2. Minimal Hamming distance of rows (base vectors!) of G is d

● Example: Hadamard code [2r, r, 2r-1] with r ≥ 2

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

23 / 25Post Quantum Crypto

Code-based cryptography: (McEliece encryption)

● Key generation:
1. Construct a k ⨉ n binary matrix G that can correct t errors
2. Construct a random k ⨉ k invertible binary matrix S
3. Construct a random n ⨉ n permutation matrix P
4. Compute matrix K = S⋅ G⋅ P

Public key: (K, t)
Private key: (S, G, P)

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

24 / 25Post Quantum Crypto

Code-based cryptography: (McEliece encryption)

● Encryption using public key (K, t):
1. Construct a k-bit message m to be encrypted
2. Compute n-bit encrypted message e = m⋅ K

3. Construct a random n-bit vector r with t bits set
4. Compute ciphertext c = e ⨁ t

● Decryption using private key (S, G, P):
1. Compute n-bit message p = c P⋅ -1

2. Decode n-bit message p into k-bit message d
3. Compute k-bit plaintext message m = p S⋅ -1

Bernd Fix <brf@hoi-polloi.org>Post-Quantum Crypto

25 / 25

Post Quantum Crypto
Bernd Fix <brf@hoi-polloi.org>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

